
Discrete Bayesian Uncertainty Models for Mobile-Robot Navigation

Anthony R. Cassandra and Leslie Pack Kaelbling and James A. Kurien

farc, lpk, jmkg@cs.brown.edu
Department of Computer Science

Brown University

Abstract

Discrete Bayesian models have been used to model
uncertainty for mobile-robot navigation, but the ques-
tion of how actions should be chosen remains largely
unexplored. This paper presents the optimal solution
to the problem, formulated as a partially observable
Markov decision process. Since solving for the opti-
mal control policy is intractable, in general, it goes on
to explore a variety of heuristic control strategies. The
control strategies are compared experimentally, both in
simulation and in runs on a real robot.

1 Introduction
A robot that delivers items and performs errands in

an o�ce environment needs to be able to navigate ro-
bustly. It should be able to overcome errors in percep-
tion and action, at worst getting lost for some period
of time, but then being able to recover by re-localizing
itself and continuing with its task.

The Bayesian framework is particularly appropriate
for modeling the robot's belief about its location (or,
more generally, the state of the world). It supplies a
well-founded method for taking the robot's current be-
liefs and combining them with uncertain information
gained from sensing and acting. The Bayesian frame-
work has been used for a long time in robotics with
good results [7]. In this paper, we develop a two-level
architecture, with Bayesian modeling done at the top
level only. In addition, we explore sub-optimal control
strategies given the Bayesian belief state.

The standard proccess for applying the Bayesian
framework to modeling mobile-robot uncertainty is:

� build, typically manually, a detailed, metric,
Cartesian map of the robot's environment, includ-
ing positions of perceptible features;

� represent the true state of the robot as a position
and orientation (pose) in global coordinates;

� represent the belief state of the robot using a con-
tinuous parametric probability distribution (typ-
ically Gaussian) over poses;

� model uncertainty in the robot's actions and ob-
servations using continuous parametric distribu-
tions (typically Gaussians);

� predict which features will be observed and match
them to actual observations; then use a Kalman
�lter to update belief state based on actions and
matched observations; and

� choose actions most appropriate for the mean or
mode of the belief state.

For many tasks in many environments, it is not
necessary to know the robot's pose in detail. Given
robust low-level routines that can, for example, use
local sensors to drive through a door, it is only neces-
sary to know that the robot is in some region outside
the door that serves as a precondition to the low-level
operator. In such cases, a more coarse-grained un-
certainty model may be appropriate. We pursue an
approach to navigation in which the process is to:

� develop a set of robust low-level perception and
action routines (such as driving around corners
and detecting doors);

� build, manually, a topological model of the envi-
ronment, with nodes corresponding to regions of
pose space that can be grouped as preconditions
or postconditions of the action routines;

� represent the true state of the robot as a node in
the topological map;

� represent the belief state of the robot using a dis-
crete probability distribution over these nodes;

� model the uncertainty in the robot's actions and
observations using discrete distributions;

� use Bayes' rule to update the belief distribution
based on its actions and observations;

� use instantaneous rewards and a discounted opti-
mization criterion to specify the objective; and

� take control actions given the robot's belief state.

One advantage of this approach is that it can be
applied just as easily to situations in which the robot
initially knows its location as to situations in which
the robot's initial belief state is uniform (it has no idea
where it is). As the robot begins to take actions and
make observations, the belief distribution will change
to reect its new information; there is no need for this
distribution to be continuous or unimodal. It may be
the case, for example, that the robot will know that it
is in a corner of the building, but not which one.

This is by no means the �rst project to use dis-
crete belief models. The Dervish project at Stan-
ford University [13] used a topological map combined
with robust low-level behaviors. Their belief-state up-
date was heuristic, based only on a model of observa-
tional error (but not error due to actions). The Xavier
project at Carnegie-Mellon University [17] used a full
belief-state update. Both of these projects used fairly
ad hoc action strategies, based on planning paths as
if the domain were deterministic. The major contri-
bution of this paper is to outline the optimal control

strategy, then to present a number of heuristic ap-
proximations to it, comparing their performance in
simulation and in runs on a real robot.

We begin by describing the architecture of the sys-
tem. Next, we introduce the optimal belief state up-
date and control strategies, and describe a number of
heuristic control strategies. Finally, we present ex-
perimental results comparing these control strategies
both in simulated experiments and actual runs on our
mobile robot.

2 System Architecture
The system described in this paper has a two-level

software architecture. The higher level, referred to as
the navigator, uses an abstract Bayesian model of the
environment and the robot's actions and observations.
In the context of this model, the navigator receives ob-
servations, maintains a belief distribution, and chooses
actions. The role of the lower level software, called the
pilot, is to bridge the gap between the actions and ob-
servations of the abstract model and the motions and
percepts of the underlying robot.

2.1 Navigator Layer

The navigator, as we have implemented it, assumes
that it is running in an o�ce-type environment, made
up of corridors and rooms oriented along two approx-
imately orthogonal axes. The general approach de-
scribed here could be applied to any other environ-
ment that is easily characterized as a network of states
with abstract operations that move between them.
Relevant examples include street networks and under-
ground sewer systems.

We provide the navigator with rough metric infor-
mation for the o�ce environment, from which it gen-
erates a state map. A state consists of a location and
an orientation (one of four compass directions). The
locations can be discrete square areas of any size in
the environment, though for all of our experiments
we used a one-square-meter discretization. The map
describes the underlying connectivity of these states
and speci�es a type, room or corridor, for each loca-
tion. The location types help de�ne the ideal observa-
tions for each state. For example, if the robot is in a
corridor-type location and looks in the direction of an
adjacent location, which happens to be a room-type
location, then ideally it would see a doorway.
Abstract Actions The robot has �ve abstract ac-
tions: move-forward, turn-left, turn-right,no-op
and declare-goal. The declare-goal action is used
by the robot to indicate that it has achieved its ob-
jective. The action model speci�es, for each state and
action, the probability that each state will result. Due
to the regularities in the environment, we can compute
the action model from the connectivity of the map and
an action error model.

Table 1 shows the action probabilities used in our
experiments. We de�ne these abstract actions in terms
of possible actual outcomes. For example, in the turn-
left action, F-L (0:1) means that, with probability 0:1,
the the robot would actually move forward (F) and
then rotate 90 degrees to the left (L). Rotating 90 de-
grees to the right is notated by (R) and no movement
by (N). If an outcome cannot occur in a particular

Action Standard outcomes (probabilities)
move-forward N (0.11), F (0.88), F-F (0.01)
turn-left N (0.05), L (0.9), L-L (0.05)
turn-right N (0.05), R (0.9), R-R (0.05)
no-op N (1.0)
declare-goal N (1.0)

Action Noisy outcomes (probabilities)
move-forward N (0.05), F (0.7), F-F (0.05),

L (0.1), R (0.1)
turn-left N (0.1), L (0.7),

L-L (0.1), F-L (0.1)
turn-right N (0.1), R (0.7),

R-R (0.1), F-R (0.1)
no-op N (1.0)
declare-goal N (1.0)

Table 1: Action probabilities for abstract actions.

state of the world (for example, going forward when
there is wall in front), then the robot is left in the last
state before the impossible outcome.
Abstract Observations In each state, the robot is
able to make an abstract observation. It can perceive,
in each of three nominal directions (front, left, and
right) whether there is a doorway, wall, or free space,
or it is undetermined. An abstract observation is the
combination of the percepts in each direction. Thus,
there are 64 possible abstract observations. The ob-
servation model speci�es, for each state and action,
the probability that a particular observation will be
made. As with the abstract action model the en-
tire table need not be speci�ed. Instead, the obser-
vation probabilities are computed from the ideal ob-
servations, as speci�ed in the map, and an error model
obtained through informal experimentation.

Table 2 shows the conditional probabilities for the
abstract observations. The column labeled \standard"
contains the values used in simulation and on the ac-
tual robot. The values in the \noisy" column were
used in extra simulation experiments to explore the
e�ects of noise. The observations depend on the ac-
tion taken, since the robot has to move to get addi-
tional useful sensor readings. In our implementation,
the observation probabilities after a move-forward,
turn-left or turn-right action are the same, but no-
op results in no new observational information.

Modeling the observations this way makes some
strong independence assumptions. Not only do we
assume that the individual directional percepts at a
given time are independent, we also assume that the
observations at one instant are independent of the ob-
servations at another instant. In the actual imple-
mentation of the observations in the pilot layer, these
assumptions are not justi�ed. It would be a fairly
simple extension to learn the entire observation table
from experience, but that was not done in this work.

2.2 Pilot Layer

The pilot layer supports the navigator's model on
a real robot, in this case a Real World Interface, Inc.
B21 mobile robot. The B21 is a four-wheeled cylin-
drical synchro-drive base with 24 ultrasonic sensors
and 24 infrared sensors evenly distributed about its

Oa Oi P (Oa j Oi)
Actual Ideal Standard Noisy

wall wall 0.90 0.70
open wall 0.04 0.19
doorway wall 0.04 0.09
undetermined wall 0.02 0.02
wall open 0.02 0.19
open open 0.90 0.70
doorway open 0.06 0.09
undetermined open 0.02 0.02
wall doorway 0.15 0.15
open doorway 0.15 0.15
doorway doorway 0.69 0.69
undetermined doorway 0.01 0.01
undetermined undetermined 1.00 1.00

Table 2: Conditional observation probabilities used to
construct the abstract observation noise model.

circumference. The infra-red sensors are fairly reli-
able short-range proximity sensors used only for emer-
gency obstacle detection and avoidance. The ultra-
sonic sensors give longer-range proximity information,
but, due to higher-order specular reections, their
readings must be combined in order to get a true pic-
ture of surfaces in the world. They are combined in a
local occupancy grid, which is the basis of high-level
feature detection.
Occupancy GridThe pilot fuses ultrasonic measure-
ments in an occupancy grid using a simpli�ed variant
of the algorithm of Moravec and Elfes [12]. Since the
pilot is responsible solely for local navigation, the oc-
cupancy grid only maps features whose distance from
the robot is within a small range. As the robot moves
forward, the occupancy grid maintains a small, robot-
centric map, with information derived from old ultra-
sonic data constantly scrolling o� the grid's trailing
boundary. Since only short range ultrasonic readings
are considered, a simple certainty model is used in
place of a more complex probabilistic model involving
the spread of the ultrasonic wave over distance.

Restricting the grid to a local region allows numer-
ous simpli�cations over global occupancy-grid meth-
ods such as those used in RHINO [1]. First, even
when the robot is operating in very narrow corridors
there is no preprocessing of ultrasonic data to elimi-
nate higher-order specular reection. Any ultrasonic
reading greater than 1.5 meters is not relevant to the
grid and is discarded, eliminating the majority of trou-
blesome readings. Second, the grid is robot-centric
and data only persists over a few meters of motion.
There is no requirement that the robot's dead reckon-
ing be accurate except over very small intervals, elim-
inating the need for error estimates and correction.
Third, even using as much resolution as the ultrasonic
sensors can deliver our small map requires relatively
little time and space to maintain. This resolution has
enabled robust feature detection in the grid.
Supporting Abstract Observations The pilot's
percepts and actions are highly dependent upon de-
tecting features of the environment such as doors or
the direction of a world axis. These features are de-
termined by processing the local occupancy grid with

several specialized feature detection algorithms. The
orientation of the closest world axis is estimated by
integrating the world axis estimates of several local
occupancy grids as the robot travels. Within the cur-
rent grid, a local estimate of wall direction is found
by looking for one or more long parallel line segments
in the occupancy grid image. If the robot turns, the
existing world axis estimate is rotated ninety degrees
and serves as a seed in the new estimate of the axis in
the current direction of travel.

Once a world axis is estimated, a simple search for
doors, openings and walls in the robot's vicinity is
made along the axes to the left, front and right of the
robot. If there is a rough line segment (found using
a Hough transform [4]) in the occupancy grid that is
parallel or perpendicular to the estimated axis, then
a wall is observed. Similarly, if the occupancy grid is
largely clear along an axis an open observation results.
A door is observed by an ad hoc detector that searches
for door-like indentations or openings in what would
otherwise be classi�ed as a wall segment. Percepts for
the left, front and right of the robot are returned by
the pilot after each action and combined into a single
observation.
Supporting Abstract Actions

The pilot layer supports four of the abstract ac-
tions: move-forward, turn-left, turn-right, and
no-op. Note that in the pilot layer the declare-goal
action has the same e�ect as the no-op action. The
turn-left and turn-right actions attempt to reorient
the robot (independent of the current orientation) to
the axis orthogonal to the current one.

To simplify modeling of location, the navigator dis-
cretizes the world into locations a uniform distance
apart. As a result, its model speci�es that eachmove-
forward takes the robot one distance unit (currently
a meter) and that all interesting features (doors, start
of an opening, etc) are separated by even multiples
of the distance unit. The resulting semantics of the
move-forward action are slightly complicated. If the
pilot does not detect a new feature, it simply attempts
to move forward one unit along the estimated axis of
travel. If obstacles are encountered, the pilot will at-
tempt to guide the robot past the objects until approx-
imately one unit of travel in the requested direction
has been accomplished. If a new feature is encoun-
tered, such as a door or a new opening, the forward
motion is completed as if one unit had been traveled.
Thus, the robot always appears to travel a whole num-
ber of distance units between features, supporting the
discretized model the navigator requires.

2.3 Reliability

It is important to note that the pilot system is not
completely reliable. For example, it occasionally mis-
takes a hallway for an open door and it never knows
which of the four world axes it is following. It oc-
casionally even mis-estimates an axis, traveling diag-
onally in the world for short distances. In informal
experiments using the pilot as if it were deterministic,
these slight fallibilities proved disastrous. However,
since the navigator explicitly models the fallibility of
the abstraction the pilot provides, the current level of

competence is adequate for the navigation tasks we
have attempted.

3 POMDP Model
In this section, we briey describe the class of mod-

els known as partially observable Markov decision pro-
cesses (pomdps). This model was developed in the
operations research community [10, 20] and has been
recently introduced to arti�cial intelligence [2]. We
start by describing the simpler class of Markov deci-
sion processes.

3.1 Markov Decision Processes

An mdp is de�ned by the tuple hS;A; T;Ri, where
S is a �nite set of environment states that can be
reliably identi�ed by the robot; A is a �nite set of
actions; T is a state transition model of the environ-
ment, which is a function mapping elements of S �A
into discrete probability distributions over S; and R is
a reward function mapping S � A to < that speci�es
the instantaneous reward that the robot derives from
taking each action in each state. We write T (s; a; s0)
for the probability that the environment will make a
transition from state s to state s0 when action a is
taken and we write R(s; a) for the immediate reward
to the robot for taking action a in state s. For a pro-
cess to be Markov, the current state and action must
provide all of the information available for predicting
the next state. A policy � is a mapping from S to A,
specifying an action to be taken in each situation.

Given a policy � and a reward function R, the value
of state s 2 S, V�(s), is the sum of the expected values
of the rewards to be received at each future time step,
discounted by how far into the future they occur. That
is, V�(s) =

P
1

t=0
tE(Rt), where Rt is the reward

received on the tth step of executing policy � after
starting in state s. A closely related quantityQ�(s; a),
is the value of state s given action a is executed �rst
and policy � followed thereafter.

The discount factor, 0 � < 1, controls the inu-
ence of rewards in the distant future. When = 0,
the value of a state is determined entirely by rewards
received on the next step; we are generally interested
in problems with a longer horizon and set to be near
1. Due to properties of the exponential, the de�nition
of V can be rewritten as

V�(s) = R(s; �(s)) +
X
s0
2S

Pr(s; �(s); s0)V�(s
0) :

We say that policy � dominates (is better than) �0

if, for all s 2 S, V�(s) � V�0 (s), and for at least one
s 2 S, V�(s) > V�0 (s). A policy is optimal if it is
not dominated by any other policy. Given a Markov
decision process and a value for , it is possible to
compute the optimal policy fairly e�ciently [16]. We
shall use ��(s) to refer to the optimal policy for an
mdp, but drop asterisks from the optimal value and Q
functions, V (s) and Q(s; a).

3.2 Adding Partial Observability

When the state is not completely observable, we
must add a model of observations. This includes a �-
nite set O of possible observations and an observation

function O, mapping A � S into discrete probabil-
ity distributions over O. We write O(a; s; o) for the
probability of making observation o from state s after
having taken action a.

A belief state is a discrete probability distribution
over the set of environment states, S, representing for
each state the robot's belief that it is currently occu-
pying that state. Let B be the set of belief states. We
write b(s) for the probability value assigned to envi-
ronment state s in belief state b. Now, we can decom-
pose the problem of acting in a partially observable
environment into two components: a state estimator,
which takes as input the last belief state, the most
recent action and the most recent observation, and re-
turns an updated belief state; and a policy, which now
maps belief states into actions.

The state estimator can be constructed out of T and
O by straightforward application of Bayes' rule. The
output of the state estimator is a belief state, which
can be represented as a vector of probabilities, one for
each environmental state, that sums to 1. The com-
ponent corresponding to state s0, written SEs0(b; a; o),
can be determined from the previous belief state b,
the previous action a, and the current observation o
as follows:

SEs0(b; a; o) =
O(a; s0; o)

P
s2S T (s; a; s

0)b(s)

Pr(o j a; b)

where Pr(o j a; b) is a normalizing factor. The result-
ing function will ensures that the current belief state
accurately summarizes all available knowledge.

4 Constructing Optimal Policies
The key to �nding optimal policies in the partially

observable case is that the problem can be cast as
a completely observable continuous-space mdp. The
state set of this \belief mdp" is B and the action set is
A. Given a current belief state b and action a, there
are only jOj possible successor belief states b0, so the
new state transition function, � , can be de�ned as

� (b; a; b0) =
X

fo2OjSE(b;a;o)=b0g

Pr(o j a; b) ;

where Pr(o j a; b) is de�ned above. The reward func-
tion, �, is constructed from R by taking expectations
according to the belief state; that is,

�(b; a) =
X
s2S

b(s)R(s; a) :

The belief mdp is Markov [18], that is, having in-
formation about previous belief states cannot improve
the choice of action. Most importantly, if an agent
adopts the optimal policy for the belief mdp, the re-
sulting behavior will be optimal for the partially ob-
servable process. The remaining di�culty is that the
belief process is continuous; the established algorithms
for �nding optimal policies in mdps work only in �-
nite state spaces and the existing exact pomdp solu-
tion procedures are computationally intractable [14].
A number of algorithms exist for solving the belief
mdp [19, 3, 11, 9], but even the most e�cient of these

can only solve small problems with on the order of 10
states and 10 observations.

5 Heuristic Control Strategies
Since it is computationally intractable to compute

the optimal pomdp control strategy for all but the
simplest environments, we consider a number of simple
heuristic control strategies, some of which are fairly ad
hoc, and others with more principled motivations.

5.1 Belief Replanning

We have implemented a strategy that is a slight
variation on the strategy used in Dervish [13]. The
algorithm starts by �nding the most likely world state
and planning a path to the goal in a deterministic
idealization of the domain. In addition, it generates
a sequence of predicted world states that will be tra-
versed if the nominal trajectory is followed. The robot
then embarks upon this plan, updating its belief state
and checking, at each step, that the most likely world
state (according to the belief distribution) is equal to
the predicted state. If it is not, the cycle begins again
by planning from the current most likely state.

The main di�erence between our implementation
and the original approach is that, rather than com-
puting the Bayesian belief state, the original approach
used a model of observational uncertainty only (no ac-
tion uncertainty) to compute certainty factors on the
world states.

5.2 MDP-Based Algorithms

A pomdp model is an mdp model with probabilis-
tic observations. In the mdp-based algorithms of this
section, we make use of the solution to the underly-
ing mdp, which can be obtained quickly for even very
large models.

The most likely state (mls) policy �nds the world
state with the highest probability and executes the ac-
tion that would be optimal for that state in the mdp:
�mls(b) = ��(argmaxs b(s)). The only real di�erence
between this scheme and the belief-replan heuristic is
the use of the optimal mdp policy instead of a plan
based upon a simpli�ed deterministic version of the
environment. These may be very similar in the cur-
rent domain, but if there are potentially dangerous
consequences to some actions (such as falling down a
staircase) the mdp will take them into account.

In the voting method, we start by computing the
probability (according to the belief distribution) that
each action is optimal:

wa(b) =
X
s2S

b(s)I(��(s) = a) ;

where I is an indicator function, with value 1 if the
argument is true and 0 otherwise. Then, we choose the
action that is most likely to be optimal: �vote(b) =
argmaxa wa(b). This is similar to the action-choice
method used in Xavier [17]. The only di�erence is
that they used a deterministic planning algorithm to
choose the best action for each world state, rather than
�nding the best action in the underlying mdp.

The QMDP method [8] is a more re�ned version of
the voting method, in which the votes of each state
are apportioned among the actions according to their

Q value:

�Q�MDP(b) = argmax
a

(
X
s

b(s) �Q(s; a)) :

This is in contrast to the \winner take all" behavior of
the voting method. This technique would be optimal
if the uncertainty in the location existed for only a
single step.

5.3 Taking Degree of Uncertainty into

Account

In general, it is useful for a robot's actions to de-
pend on its degree of uncertainty. Solving for the op-
timal policy for a pomdp model seamlessly integrates
the two concerns of acting in order to reduce uncer-
tainty and acting in order to achieve the goal. Since
it is infeasible to solve the pomdp directly, the al-
gorithms of this section explicitly trade o� these two
concerns.

Both of our methods consider a myopic strategy for
taking actions to gain information. The entropy of a
probability distribution b is E(b) = �

P
s2S bs log bs,

where log bs = 0 when bs = 0. The lower the value,
the more certain the distribution. When the robot is
confused, the entropy is high, and it will be reasonable
to take actions to reduce the entropy of the belief state.
We de�ne the expected entropy of a belief state, b, and
action, a as

EE(a; b) =
X
b0

� (b; a; b0)E(b0) ;

where the summation is over all possible next belief
states. It is possible to consider the expected en-
tropy resulting from longer sequences of action, but
it quickly becomes quite expensive to compute.

A simple strategy would be to follow one of the
mdp-based policies as long as the entropy of the belief
state is not too high, then act explicitly to reduce the
entropy using the myopic strategy of taking the action
that most reduces expected entropy of the next belief
state. In some cases, however, there is benign entropy
in the belief state; that is, there is confusion among
states that require the same action. In such cases,
there is no reason to try to reduce the entropy. For
this reason, we compute the entropy of the action-
optimality distribution, wa(b), instead. If this entropy
is above some threshold �, then there is a genuine
confusion about which action to take and we seek to
reduce it. Thus,

�AE(b) =

�
argmaxawa(b) if H(w(b)) < �
argminaEE(a; b) otherwise

In the entropy-weighting (ew) approach, rather
than exclusively pursuing the goal or exclusively try-
ing to reduce entropy, the policy weights these two
aims using a normalized form of the entropy. De�ne
the normalized entropy of a belief state as ~E(b) =
(E(b)=E(u))k, where u is the uniform belief state
(which has maximum entropy) and k is a factor used
control the relative weighting of the entropy. This
yields a measure between 0 and 1. If the robot had
certain knowledge that it was in world state s and

Goal

Exp. 1 Start
(east)

Exp. 2 Start
(east)

Exp. 2 Start
(north)

(east)

N

Figure 1: Synthetic o�ce environment A.

Goal
(south)

Exp. 1 start
(north)

Exp. 2 start
(north, south)

N

Figure 2: Synthetic o�ce environment B.

would maintain its certainty into the future, then the
long-term value would be V (s), because it could take
appropriate actions. This means that V � b is an up-
per bound on the value of being in belief state b. On
the other hand, if the robot were completely confused,
then its value would be considerably lower. One way
to estimate this is to consider the value of a state,
V L(s) resulting from performing some �xed sequence
of actions designed to disambiguate the state, then
performing optimally thereafter. While these values
may still be too optimistic, they provide a truer pic-
ture of the value of being confused. We used a se-
quence of length 20, which consisted of a repetition of
5 move-forward actions followed by a single turn-
left action. This sequence was based upon the homing
sequence [6] for a determinized version of our domain.
We de�ne the weighted entropy value as

EV (b) = ~E(b0)(b0 � V L) + (1� ~E(b0))(b0 � V) ;

and the associated Q value as

EQ(b; a) = �(b; a) +
X
b0

� (b; a; b0)EV (b0) :

Finally, the policy is �EW(b) = argmaxaEQ(b; a).

6 Simulation Experiments
We �rst tested these control strategies in simulation

on a variety of synthetic o�ce environments, where it
is easier to run extensive experiments. We then con-
�rm these results by running experiments in a model
of the real o�ce environment in which our robot is
situated. For the ae algorithm � = 1 and for the ew
algorithm k = 2.
Synthetic Environments Figures 1 through 4 show
the layouts of four synthetic environments. Each loca-
tion is represented as four states in the pomdp model,
one for each major orientation. The dark locations are
rooms, connected to corridors by doorways.

We conducted three separate sets of experiments in
each synthetic environment, with di�erent start and
goal state sets (see �gures). In the �rst set of ex-
periments, the robot knows which state it has started
in, whereas in the second set there is some small set
of similar looking states where the robot could have
started. The last set of experiments have the robot
starting o� with no information about its starting
state. When there is more than one start state for

Exp. 3 goal
Exp. 2 goalExp. 1 goal

(south) (south)
(west)

Exp. 2 start
(west)Exp. 1 start

(north)

Exp. 2 start
(east)

N

Figure 3: Synthetic o�ce environment C.

Goal
(east)

Exp. 2 start
(west)Exp. 2 start

(south)

Exp. 1 start
(east)

N

Figure 4: Synthetic o�ce environment D.

a given experiment, the robot starts randomly in one
of the states, with its belief state initialized to the uni-
form distribution over the set of possible start states.

In these domains, a reward of 1 is given for per-
forming the action declare-goal in the goal state, and
0 for all other state-action pairs. An alternative is
to give reward for entering the goal state. However,
navigation is rarely useful for its own sake; the robot
will have to perform some further actions when it ar-
rives at the goal and, therefore, has only succeeded if
it has arrived at the goal and knows it (or believes it
to a high enough degree). Trials are terminated when
the declare-goal action has been executed or after 300
steps; performance is measured as the discounted sum
of rewards (= 0:99) starting from the initial state.
The results reported in the tables are averages over
250 trials.

Table 3 shows the results of the di�erent heuris-
tics on the four synthetic o�ce environments when the
starting state is known. In addition to the heuristics,
we include the results of an omniscient agent, which
knows the true state at all times. This gives some
coarse measure of how hard the problem is, though it
should not be confused with what is achievable, even
for an optimal policy.

Although there is some variability between the
heuristics, for the most part all of them do well. Since
each is an approximation scheme, there are particular
circumstances where they can be made to fail. The
data points where one of the heuristics appear sig-
ni�cantly worse than the others are examples of such
circumstances. However, the mls scheme is the most
robust of the heuristics, showing that not much more
than the information in the belief state is needed to
do exceedingly well in this situation.

O�ce
Algorithm A B C D

mls 0.642 0.749 0.662 0.791
Voting 0.639 0.704 0.612 0.800
Q-mdp 0.662 0.743 0.452 0.825
Replan 0.625 0.768 0.660 0.773
ew 0.650 0.777 0.464 0.821
ae 0.642 0.742 0.605 0.802

Omniscient 0.677 0.846 0.756 0.836

Table 3: Experiment 1: Known starting state.

O�ce
Algorithm A B C D

mls 0.695 0.639 0.779 0.791
Voting 0.669 0.000 0.737 0.791
Q-mdp 0.704 0.000 0.788 0.853
Replan 0.654 0.649 0.773 0.787
ew 0.720 0.000 0.742 0.811
ae 0.712 0.000 0.737 0.809

Omniscient 0.728 0.848 0.845 0.878

Table 4: Experiment 2: Multiple possible start states.

O�ce
Algorithm A B C D

mls 0.630 0.615 0.601 0.729
Voting 0.599 0.570 0.257 0.648
Q-mdp 0.405 0.502 0.308 0.574
Replan 0.618 0.602 0.626 0.690
ew 0.465 0.473 0.252 0.546
ae 0.608 0.679 0.373 0.671

Omniscient 0.750 0.868 0.853 0.898

Table 5: Experiment 3: Uniform starting belief.

The next situation we address is when the agent
is not certain of its starting state. The experiments
shown in Table 4 are instances where there are two
possible starting states (four possible states for o�ce
B) that are similar in their immediate surroundings.

This is the �rst place where we see some of the
heuristics performing poorly. The Q-mdp and voting
scheme are never able to reach the goal in the o�ce B
experiment. This results from them cycling through
the same set of actions without making any progress
toward the goal. This cycling behavior is not always
present, as can be seen by their performance in the
other environments. In fact, the Q-mdp heuristic is
slightly better than the others in the o�ce D experi-
ment, where that particular con�guration of starting
states and goal state allows it to behave nearly as well
as the omniscient scheme.

A problem with selecting the voting or Q-mdp
scheme for this type of situation is that it is not easy to
know a priori if the particular environment will bring
out the best or the worse in these algorithms. The mls
scheme performs well across all of these situations and
would be the prefered choice unless something more
was known about the particular problem instance.

The �nal situation we explore is the most di�cult:
what if the robot is equally likely to start in any of the
states? In this situation, its initial belief distribution
is uniform over all states. Table 5 shows the results
of applying the heuristics to this situation. These re-
sults show that the Q-mdp and voting schemes do not
perform well when the uncertainty is high. The mls
scheme is still quite robust and suggests that for mod-
erately noisy environments, it is the best choice across
di�erent type of environment con�gurations and start-
ing beliefs.

These results also show that the ae heuristic is a
useful enhancement to the voting scheme. It can some-
times outperform all of the other heuristics, though
it can also do worse than the mls scheme. We be-
lieve that entropy-based schemes have even moremerit

Experiment
Alg. 1 2 3 4 5 6. 7
mls .77 .72 .45 .78 .76 .39 .50

Voting .69 .72 .34 .71 .78 .21 .54
Q-mdp .80 .730 .45 .82 .76 .43 .41
Replan .74 .70 .44 .81 .71 .37 .48
Omnisc. .81 .75 .49 .86 .78 .48 .65

Table 6: Simulations of real robot o�ce environment.

when the action set contains explicit information gath-
ering actions. Unfortunately, the models we used for
these experiments did not have a very rich set of ac-
tions, so no one action would provide signi�cantly
more information than another.
Noisier Synthetic Environments The navigation
problem becomes harder as the noise in actions and
observation increase. In order to gauge the e�ects of
noise on the various heuristics, we repeated the exper-
iments above using the more noisy action and observa-
tion probabilities shown previously in Tables 1 and 2.
Space precludes the inclusion of the full data set, so
we merely touch upon the results.

The Q-mdp heuristic was universally bad across all
con�gurations and starting beliefs. In none of the tri-
als did it ever declare itself to be in the goal. This
is a direct result of Q-mdp's assumption that it will
be completely disambiguated on the next step. Since
the noise is high, it will never have a very con�dent
belief that it is in the goal. It would prefer to delay
declaring the goal by doing one more action in hopes
of knowing where it will be after that action.

The belief replan scheme, though not as bad as Q-
mdp, was inferior to the mls and voting algorithms.
Again, the mls heuristic was the best choice in these
environments. Note that the entropy-based heuris-
tics are not of much help in these noisy environments.
Since all actions and observations have a fair amount
of noise, no action is likely to reduce the belief state's
entropy signi�cantly.
Real O�ce Environment Figure 5 shows the lay-
out of the o�ce in which our robot actually exists.
Including the absorbing state, there are 1053 pomdp
states. This layout with the standard noise model was
used both in simulation and on the actual robot. In
these experiments we used 7 di�erent starting belief
state con�gurations. For all of these experiments, the
goal state was the same, location G facing east. The
�rst three experiments were for a known starting lo-
cation, (A-east, B-east and C-south), roughly corre-
sponding to di�ering physical distances from the goal.
The next three experiments used a starting belief over
two locations; for each of the previous starting states
we added a state, (D-east, E-east and F-north respec-
tively), roughly the same distance and with similar im-
mediate observations. The �nal experiment was con-
ducted with a uniform starting belief over all states.

Table 6 shows the simulation results for 100 trials.
These results are consistent with the synthetic o�ce
A layout, which is a simpli�ed version of this real en-
vironment. We did not use the ew or ae heuristics in
either the simulated or actual robot experiments.

CF

BAGDE

N

Figure 5: Real robot o�ce environment.

Experiment
Alg. 1 2 3 4 5 6
mls .83 .76 .49 .84 .78 .26

Voting .86 .76 .50 .00 .77 .00
Q-mdp .83 .78 .46 .78 .76 .22
Replan .84 .72 .30 .70 .39 .30

Table 7: Experiments on robot.

7 Robot Experiments

In order to verify the simulation results, we dupli-
cated the experiments from Table 6 on a real robot
running in the unmodi�ed Computer Science depart-
ment (Figure 5). Due to the time required for the
robot to complete an experimental trial only 108 tri-
als were run. Three trials per algorithm were run for
experiments one, two and three while three trials per
starting location were run for each algorithm in ex-
periments four, �ve and six. The average discounted
reward for each algorithm is shown in Table 7.

As in simulation, all four algorithms proved ade-
quate when the starting state was known (1,2,3). Each
reached the goal rather directly on every trial despite
occasional errors in observation or action. In exper-
iments where the starting belief state had a bimodal
distribution (4,5,6) only mls reached the goal on every
trial. In these experiments both Q-mdp and Replan
at least once issued the declare-goal action in a state
which was near and similar to the goal, but in fact not
the goal. A larger number of trials might reveal the
same fallibility in mls. In experiment 6 the appropri-
ate initial actions of the possible starting states are at
odds, and all algorithms spend up to the �rst half of
the required actions collapsing the belief state to the
actual state then making a direct run to the goal.

Voting performed signi�cantly worse in reality than
our simulation suggested it might. Voting can lead
to cycles of belief states and actions which do not
make progress toward the goal. This was not as pro-
nounced in simulation because persistent cycles are
less likely. The simulator models the pilot as the nav-
igator does, with action and observation errors deter-
mined by a stationary probability distribution. Most
cycles of belief states and actions are soon disrupted
by a failed action or erroneous observation. In reality,
the liklihood of errors by the robot is dependent upon
the its current con�guration in the environment. For

some con�gurations and sets of actions the robot is ex-
tremely reliable, allowing an action/observation cycle
and the associated belief state cycle to persist inde�-
nitely. The initial con�gurations of experiments 4 and
6 reliably cause the voting algorithm to enter a cycle
of in-place turns which persists for at least hundreds of
actions. The simulator's strict adherance to the sim-
pli�ed probability model can also cause the simulated
omniscient controller to encounter more errors, lead-
ing to worse performance for simple tasks than other
algorithms running on the robot.

8 Conclusions
By accepting the inevitable errors in low-level pi-

loting, we can account for them and recover from
them using a robust high-level navigation strategy. Al-
though the optimal control strategy is not easily com-
puted, some well-motivated heuristic strategies per-
form better than ad hoc ones. This is only a very
preliminary study and a great deal of work remains to
be done.

All of the control strategies we have explored here
are essentially myopic with respect to uncertainty.
None of them is able to take a long string of actions in
order to disambiguate its belief state. We are begin-
ning to apply some more sophisticated methods from
the machine learning literature [8, 15] that �nd ap-
proximations to the true value function of the pomdp.
We expect that they will improve performance when
the starting location is extremely uncertain.

The simple domains explored in this paper do not
exercise the abilities of the pomdp models to con-
trol active perception. A domain in which the robot
has \perceptual" actions that perhaps have an associ-
ated cost would be appropriately controlled with this
model. In future work, we will extend the set of ac-
tions to include some visual operations that will pro-
vide better information.

One of the big shortcomings of modeling the envi-
ronment with pomdp models is that there is too much
dependence on the world being static. While the sys-
tem can cope with dynamic events by incorporating
these events into the noise model, it can only deal
with transient changes. If a fundamental change in
the layout occurs (e.g., a door closes), the robot's per-
formance could deteriorate rapidly, especially if there
are many such changes. Another line of future work is
to learn the world model from experience using tech-
niques adapted from hidden Markov models; this is
currently being pursued (for learning the probabilities,
but not the topology) by Koenig and Simmons [5].

Acknowledgments

Hagit Shatkay implemented an algorithm to �nd
homing sequences. This work was supported in part
by NSF grants IRI-9453383 and IRI-9312395.

References
[1] J. Buhmann, W. Burgard, Cremers A., D. Fox,

T. Hofmann, F. Scheider, J. Strikos, and
S. Thrun. The mobile robot RHINO. AI Maga-
zine, 16(2):31{37, Summer 1995.

[2] Anthony R. Cassandra, Leslie Pack Kaelbling,
and Michael L. Littman. Acting optimally in par-
tially observable stochastic domains. In Proceed-
ings of the Twelfth National Conference on Arti-
�cial Intelligence, Seattle, WA, 1994.

[3] Hsien-Te Cheng. Algorithms for Partially Observ-
able Markov Decision Processes. PhD thesis, Uni-
versity of British Columbia, British Columbia,
Canada, 1988.

[4] Richard Duda and Peter Hart. Use of the
Hough transform to detect lines and curves in pic-
tures. Graphics and Image Processing, 15(1):11{
15, 1972.

[5] Sven Koenig and Reid Simmons. Unsupervised
learning of probabilistic models for robot naviga-
tion. In Proceedings of the International Confer-
ence on Robotics and Automation, 1996.

[6] Zvi Kohavi. Switching and �nite automata theory.
McGraw-Hill, New York, N.Y., 1978.

[7] J.J. Leonard and Hugh Durrant-Whyte. Localiza-
tion by tracking geometric beacons. IEEE Trans-
actions on Robotics and Automation, 7(6), 1991.

[8] Michael Littman, Anthony Cassandra, and Leslie
Kaelbling. Learning policies for partially ob-
servable environments: Scaling up. In Machine
Learning: Proceedings of the Twelfth Interna-
tional Conference, pages 362{370, San Francisco,
CA, 1995. Morgan Kaufmann.

[9] Michael L. Littman, Anthony R. Cassandra, and
Leslie Pack Kaelbling. An e�cient algorithm
for dynamic programming in partially observable
Markov decision processes. Technical Report CS-
95-19, Brown University, Providence, Rhode Is-
land, 1995.

[10] WilliamS. Lovejoy. A survey of algorithmicmeth-
ods for partially observed Markov decision pro-
cesses. Annals of Operations Research, 28(1):47{
65, 1991.

[11] George E. Monahan. A survey of partially observ-
able Markov decision processes: Theory, models,
and algorithms. Management Science, 28(1):1{
16, 1982.

[12] H. Moravec and A. Elfes. High resolution maps
fromwide angle sonar. In Proceedings of the IEEE
Conference on Robotics and Automation, pages
19{24, 1985.

[13] Illah Nourbakhsh, Rob Powers, and Stan Birch-
�eld. Dervish: An o�ce-navigating robot. AI
Magazine, pages 53{60, Summer 1995.

[14] Christos H. Papadimitriou and John N. Tsitsik-
lis. The complexity of Markov decision processes.
Mathematics of Operations Research, 12(3):441{
450, 1987.

[15] Ronald Parr and Stuart Russell. Approximating
optimal policies for partially observable stochas-
tic domains. In Proceedings of the International
Joint Conference on Arti�cial Intelligence, pages
1088{1094. Morgan Kaufmann, 1995.

[16] Martin L. Puterman. Markov Decision Processes.
John Wiley & Sons, New York, 1994.

[17] Reid Simmons and Sven Koenig. Probabilis-
tic navigation in partially observable environ-
ments. In Fourteenth International Joint Confer-
ence on Arti�cial Intelligence, pages 1080{1087,
Montreal, Canada, 1995. Morgan Kaufmann.

[18] Richard D. Smallwood and Edward J. Sondik.
The optimal control of partially observable
Markov processes over a �nite horizon. Opera-
tions Research, 21:1071{1088, 1973.

[19] Edward J. Sondik. The Optimal Control of Par-
tially Observable Markov Processes. PhD thesis,
Stanford University, Stanford, California, 1971.

[20] Chelsea C. White, III. Partially observed Markov
decision processes: A survey. Annals of Opera-
tions Research, 32, 1991.

